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1. Introduction 

A debris flow is a mixture of water and particles driven down a slope by gravity. They typically 

consist of unsteady, non-uniform surges of mixtures of muddy water and high concentrations of 

rock fragments of different shapes and sizes. In its traverse down a slope, a debris flow may 

accumulate large amounts of material and transport it with high velocities. Because of 

modifications in rainfall patterns, the urbanization of mountain environments, and the 

abandonment of cultivated land in recent decades, the frequency of debris flows and the hazards 

associated with them have dramatically increased and they pose a significant threat to life and 

property (e.g., McPhee 1989). 

While we are aware that natural debris flows typically consist of unsteady, non-uniform surges 

of heterogeneous mixtures, exhibit strong grain-size segregation, and may involve distributions 

of fluid pressure that are not hydrostatic (Iverson, 1997), our intent here is to emphasize steady 

flows of idealized composition. These flows may be uniform or non-uniform and consist of 

water and identical particles or water and a mixture of particles with two diameters. Our interest 

is in the physics appropriate to their description. We focus on what we believe are the essential 

features of most, if not all, debris flows; these are the collisions between particles, mitigated by 

the interstitial fluid (e.g., Courrech du Pont, et al. 2003), that provide the mechanism for 

momentum transfer within the particle phase, and the particle-fluid interactions that provide 

forces to the particle phase associated with buoyancy, fluid drag, and fluid pressure. 

Flows over either rigid or previously deposited erodible beds are possible; the latter incorporate 

particles into the flow until a steady, uniform balance of forces is attained within the flow. The 

flows that result may involve depths of water greater than or less than the depth of the flowing 

particles. The former we refer to as over-saturated, the latter as under-saturated. All or part of the 

region of dry particles in an under-saturated flow may be sheared. The existence of under-

saturated and over-saturated flows reinforces the need to distinguish between the two phases and, 

in particular, between their depths. 

The experiments of Armanini, et al. (2005) indicate that there is a collisional exchange of 

particle momentum through the particle phase that decreases near an erodible bed. This may be 

due to the development of longer lasting particle interactions and/or an increased influence of the 
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fluid on the inter-particle interactions as the bed is approached. Also, the location of the erodible 

bed is seen to fluctuate in both space and time. This emphasizes the need for a better 

understanding of the physics that defines the interface between the continuous shearing flow 

above it and the intermittent creeping flow below (Komatsu, et al. 2001).  

Early models of debris flows treated the mixture as a single homogeneous material and employed 

a non-Newtonian rheology to incorporate the effect of the particle interactions (e.g., Johnson 

1984, Takahashi 1991, Coussot 1994, Chen 1998, Brufau, 2000). The rheologies adopted range 

from visco-plastic, with yield followed by linearly viscous shear stress, to collisional, with shear 

and normal stresses quadratic in the shear rate (Bagnold, 1954). However, as emphasized by 

Iverson (2003), such single-phase models cannot capture the interactions between the fluid and 

particle phases that are crucial to the description of the observed behaviour of debris flows. He 

emphasizes that the nature of small scale interactions between and among the particles and fluid 

differ greatly with time and position within the debris flow and focuses on the influence that 

local pore fluid pressure can have on the mobility of the particle phase.  

Iverson (1997) and others (e.g., Pittman and Le, 2005) go beyond the single-phase model for the 

mixture by incorporating the pore pressure and, more recently (Iverson, 2009), particle 

concentration as additional fields that characterizes the local state of the material. The rheology 

of the particle phase is described using a rate-independent plasticity that distinguishes between 

compression and extension. These models are typically used in depth-averaged equations. 

However, such models do not distinguish between the depths of the particle and fluid phases; 

and, as a consequence, they must employ changes in concentration to describe pore pressure 

changes and attribute the formation of snouts and lateral levees to size segregation in the particle 

phase. In this article, we attempt to establish that the appropriate particle rheology in a two-phase 

formulation is likely to include a rate-dependent component and that it is necessary to distinguish 

between the depths of the two phases. In doing so, a description of the formation of snouts and 

lateral levees is obtained that is associated with the difference in depths and rheology of the fluid 

and particle phases, independent of any size segregation of particles. 

We first describe recent laboratory experiments on steady, inclined flows of mixtures of water 

and a single idealized granular phase that focus on the differences in the depths and the velocity 

of the two phases and that provide evidence for the importance of collisional exchange of 

momentum and energy between the particles. We then indicate how a relatively simple rate-

dependent rheological model for the particles that incorporates yield may be used in the context 

of a two-phase mixture theory that distinguishes between the depths of the fluid and particle 

phases to reproduce what is seen in the experiments on both uniform and non-uniform flows. 

Finally, because a phenomenological extension of kinetic theory for a dense inclined flows of 

identical particles has recently been developed (e.g. Jenkins and Berzi 2010), we outline a kinetic 

theory for dense, inclined flows of two types of particles and water as a possible though untested 

alternative to existing phenomenological theories (e.g. Gray 2010). The result is not meant to be 
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an exhaustive review of the experiments on and the modelling of debris flow, but a report of 

recent advances. 

 

2. Experiments 

As already mentioned, debris flows are complicated phenomena that involve mixtures of air, 

water, sediments with wide grain size distributions and, sometimes, vegetal material, driven by 

gravity down slopes. The interactions between the different phases are still not completely clear, 

making it difficult for scientists and engineers to predict the triggering, the propagation, and the 

arrest of these flows. 

Even excluding the role of the vegetal material, the presence of large solid fractions and wide 

particle size distributions results in a very complicated interaction between the solids and the 

interstitial fluid. In fact, the finer fraction of the granular phase, e.g. clay and silt, can mix almost 

perfectly with the water and form a homogeneous, very viscous, and possibly non-Newtonian 

interstitial fluid, in which the liquid and the solid constituents can no longer be distinguished 

(e.g., Armanini et al. 2003). In contrast, each grain belonging to the larger solid fractions has an 

instantaneous velocity that typically differs from those of the surrounding fluid and the 

neighbouring particles (e.g. Tubino and Lanzoni 1993). This is an indication that a two-phase 

approach should be adopted in the physical and mathematical modelling. Moreover, even if the 

finer particles that are mixed with the water are excluded, non-uniform distributions of particle 

concentration and sizes are observed throughout the flow depth. 

Given the complex picture described above, researchers have simplified the framework of their 

analysis as much as possible without eliminating the essential features of real debris flows. Ad 

hoc experiments have been performed in order to study the behaviour of debris flow and derive 

proper rheological relations to be used in mathematical models suitable for risk mapping, the 

formulation of design criteria for control works aimed at hazard mitigation, and the development 

of warning systems. 

In this section, we will present a synthesis of published experiments on steady uniform and non-

uniform flows of mixtures of water and idealized particles. We will not present any result for dry 

granular flows; because, in our view, the role of the water is fundamental to the generation and 

propagation of a debris flow. Nor will we present any experiments in which debris flows are 

treated as a single phase. For simplicity, we will also exclude from this article the influence of 

woody debris, and we will focus solely on the propagation problem, setting aside the treatment 

of initiation and arrest. 
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2.1 Steady, uniform flow 

Although debris flow are natural phenomena that endanger lives and property in many regions of 

the world, the first organized scientific analysis of their nature, occurrence, development, and 

deposition is relatively recent (Takahashi 1977, 1978, 1980, 1981, 1991). Takahashi documented 

and analysed numerous debris flows and adapted geotechnical approaches and granular flow 

theories (Bagnold 1954) to study their mechanics. Until then, almost all of the available 

experimental work was devoted to dry granular flows or to non-Newtonian single-phase fluids. 

Takahashi was the first and, until now, among the few researchers that carried out laboratory 

experiments on debris model flows that consisted of mixtures of water and sediments at high 

concentration. Later experiments on liquid-granular mixtures devoted to the understanding of 

debris flow mechanics are due to Tubino and Lanzoni (1993) and Armanini et al. (2005). To our 

knowledge, the latter experiments are the only ones in which the particle and the fluid volume 

fluxes were separately measured.  

Takahashi (1991) described the typical propagation of debris flows in terms of surges, each 

characterized by a steep front, a central body, and a tail. While the analysis of the front is 

important for evaluating the impact forces on possible countermeasures and buildings, the 

propagation of many debris flows is governed by the mechanics relevant to the body, in which 

the flow can often be assumed to be uniform. Indeed, in most cases, the depth of the body 

remains almost constant during propagation, while its length increases because of the 

entrainment of material (Takahashi 1991, Davies 1988, 1990). Consequently, the experimental 

study of steady, uniform, highly concentrated granular-fluid mixtures in laboratory flumes is 

directly relevant to the understanding of debris flows. 

Tubino and Lanzoni (1993) made careful experimental observations of flow depth, time-

averaged velocity, velocity fluctuations, and bulk concentration in inclined, steady, uniform 

debris flows in an open channel. Their aim was to employ their experimental results to build a 

model for the overall rheology of a debris flow in the grain-inertia regime defined by Bagnold 

(1954), in which the momentum exchange is dominated by inter-particle collisions. This regime 

is equivalent to what Takahashi (1991) called a stony debris flow. Most of the experiments of 

Tubino and Lanzoni (1993) are on steady, uniform flows. In these, they show that the shape of 

the grains and the type of boundaries play an important role on the nature of the flow. For the 

experiments, they used a 10 m long and 20 cm wide channel, with a slope adjustable up to 31° 

and transparent sidewalls. In each experiment, a 9 to 10 cm thick layer of grains was placed on 

the base of the flume before it was saturated with water. A permeable ground sill was installed at 

the downstream end of the flume in order to prevent loss of the bed. A tank was positioned at the 

head of the flume and was filled with water. The release of a known volume flux of water from 

the tank and the consequent bed erosion led to the formation of a debris flow that propagated 

downstream for about 20 seconds without producing a significant erosion of the bed in the 

downstream part of the flume. The thickness of the saturated bed of particles affected the 

duration of the experiment, but had no influence on the flow characteristics. The volume flux of 
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water and the initial slope of the flume were the only input parameters, while the solid 

concentration resulted from the entrainment of grains in the upper part of the flume.  

The measurements of the time-averaged and fluctuating velocity were performed analysing 

videos recorded through the flume sidewall at a frequency of 50 frames per second. However, 

this is a very low frequency for the measurement of velocity fluctuations; Armanini et al. (2005) 

and Larcher et al. (2007) indicate that frame-rates above 250 frames per second should be 

employed in order to extract statistically significant profiles of the velocity fluctuations. Tubino 

and Lanzoni (1993) also traced particle trajectories to study particle interactions and the 

mechanisms responsible for stress generation. Particles were observed to move along quasi-

rectilinear trajectories, because secondary flows were inhibited by the large concentration. In 

addition, videos recorded from above the flume did not show significant non-uniformity in the 

flow velocity across the channel, providing some validation for the hypothesis that the wall 

measurements were representative of what happened within the flow. They performed 

experiments using glass spheres and two types of gravel, whose characteristics are summarized 

in Table 3. 

For a given volume flux of water, the authors observed three possible flow behaviours, 

depending on the initial bed slope. For mild slopes, less than 14° for gravel and 9° for glass 

beads, the amount of sediments entrained from the erodible bed was not sufficient to develop a 

fully saturated flow and over-saturated debris flows were generated, with a clear water layer on 

top. For moderate slopes, in the range 14° to 20°, for gravel, and 9° to 12°, for the glass beads, 

fully saturated debris flows were observed. At larger slopes, uniform flows could not be 

observed, because the entrainment of grains from the bed determined a progressively increasing 

depth of the debris flow. The time-averaged velocity profiles observed at the wall are similar to 

those of Armanini et al. (2005) and will be discussed with them in the following. The 

experimental measurements of particle and fluid volume fluxes and bed slope are given in 

Section 3. 

Armanini et al. (2005) investigated steady, uniform flows of water and plastic cylinders in a 

rectangular inclined flume. They developed a recirculating system that consisted of a glass-

walled flume, 20 cm wide and 6 m long and a conveyor system equipped with a flexible belt that 

could be driven at a speed up to 5 m/s. The mixture of water and plastic cylinders, characterized 

by an equivalent spherical diameter of 3.7 mm and a density of 1540 kg/m
3
, is collected in a 

hopper at the flume outlet and delivered to the top of the flume by the conveyor system. The 

flume and the conveyor system can be tilted independently and permit steady flows of liquid-

granular mixtures at slopes up to 25°, with no upper limit on the solid fraction. In their 

experiments, the variables controlled were the total volume of particles and water (the mixture 

volume) and the slope of the channel.  

Once the mixture volume and the slope of the flume were fixed, flows of the mixture were 

established over a rigid, non-erodible base or over an erodible bed. Flows over an erodible bed 
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were possible only for a sufficiently large mixture volume and, at least for the plastic particles 

described above, for slopes up to about 13°. When the flume was filled with smaller volumes of 

the mixture, both kinds of steady, uniform flow could be observed within a single experimental 

run, with a sharp transition between the two (Fig. 1). The transition between the rigid and 

erodible bed migrated in the upstream and downstream directions when the mixture volume was, 

respectively, increased and decreased. Above an inclination of 13° only flows over a rigid bed 

were observed.  

 

 

Fig. 1. Example of flows over a rigid and over an erodible bed observed within a single 

experimental run. The white dashed line represents the limit between moving particles and 

particles at rest. The transition between the two types of flows is observed in a very limited 

region (Fraccarollo et al. 2007). 

 

For steady, uniform flows over an erodible bed, the authors distinguished three cases, consistent 

with the definition of Takahashi (1991), depending on whether the height of the flowing particles 

was equal to the height of the flowing water (a saturated debris flow), the height of the flowing 

particles was less than the height of the flowing water (an over-saturated debris flow) or the 

height of the flowing particles was greater than the height of the flowing water (an under-

saturated debris flow). As already mentioned, the latter condition was not observed by Tubino 

and Lanzoni (1993). Multiple exposure views of the flow as seen through the transparent 

sidewall obtained from a segment of five consecutive frames for each of the three cases 

described above, and for the case of flow over a rigid bed, are shown in Fig. 2. 

 

erodible bed

rigid bed

flow direction
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Fig. 2. Multiple exposure views of the flow as seen through the transparent sidewall of the flume 

(Larcher et al. 2007): (a) flow over a rigid bed; (b) over-saturated, (c) saturated and (d) under-

saturated flows over an erodible bed. 

 

In steady, uniform flows over a rigid bed, the slope of the flow is equal to the slope of the flume 

and the concentration is determined solely by the volumes of sediments and water present in the 

flume-belt system. In contrast, for flows over an erodible bed, the common slope of the bed and 

the free surface of the flow. It was found to differ from that of the flume and to depend on the 

ratio between the particle and the total volume flux (Fig. 3). This is one of the main results of 

their work. These experiments also showed that the ratio of the heights of the water and particles 

(later referred to as degree of saturation) increased as the slope was decreased (Fig, 4) and that 

fully-saturated debris flows took place only in a very limited range of bed slopes around 8°. 
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Fig. 3. Experimental relationship between the ratio of particle flux to total flux and the bed slope 

for experiments over an erodible bed (Larcher et al. 2007, Fraccarollo et al. 2007). Saturated 

flows are observed in the bed slope range identified by the gray band (b), over-saturated flows 

for milder slopes (a) and under-saturated flows for steeper slopes (c). 
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Fig. 4. Experimental measurements of the degree of saturation as a function of the bed slope for 

the flows over erodible beds (Fraccarollo et al. 2007). 
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Using high-speed video imaging through the flume sidewall and robust imaging analysis (Capart 

et al. 2002, Spinewine et al. 2003, Spinewine et al. 2010), Armanini et al. (2005) were able to 

measure the distribution of average particle velocity, concentration, and the strength of the 

particle velocity fluctuations (granular temperature) through the depth of the flow (Fig. 5) and to 

make comparisons with the predictions of the collisional theories. For details of the 

measurements, the reader is referred to Larcher et al. (2007), where information can be found on 

how to access the complete dataset. 

 

 

Fig. 5. Profiles normal to the bed for a typical saturated flow over an erodible bed (Larcher et al. 

2007): (a) longitudinal (dots) and normal (circles) mean velocity; (b) longitudinal (dots) and 

normal (circles) root-mean-squared fluctuation velocity; (c) concentration. The gray bands 

represent error bounds, while in panel (c) the frame box surrounds points in the quasi-static bed 

at which the concentration estimator exceeded the maximum possible volume fraction. 

 

The experiments showed a stratification of rheological regimes inside the flow domain, with 

some parts dominated by collisional interactions and other parts characterized by large 

concentrations and more order. In the latter parts, particles interacted through sustained contacts, 

often moving in organized chains parallel to the bed. Chains of particles were observed, in 

particular, near the surface of erodible beds. The authors showed that the Bagnold (1954) theory 

and classic kinetic theory (Jenkins and Hanes 1998) were appropriate tools for the description of 

the flow in the less dense, collisional layers, while they failed to describe the flow features in the 

dense layers. They also showed that the local Stokes number - the ratio of the particle inertia to 

the viscous force exerted on it - had a strong variability throughout the flow depth, and that the 

transition region between the regimes of collisional and enduring contact was associated with 

Stokes numbers in the range 5 to 10. In the transition region, Armanini et al. (2009) later 

observed intermittency between the two regimes. 
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Finally, it is worth noting that mean velocity and granular temperature profiles similar to those 

reported by Armanini et al. (2005) for the over-saturated case have been experimentally observed 

in the case of classic sediment transport (Fraccarollo and Rosatti 2010), suggesting that the 

analysis of debris flows may be extended to deal with more common hydraulic phenomena. 

 

2.2 Steady, non-uniform flow 

Although we have already underlined the importance of investigating steady, uniform flows, in 

order to understand particle-particle and fluid-particle interactions, natural debris flows are often 

unsteady and inevitably exhibit non-uniform features. Consequently, it natural to consider next 

laboratory experiments that on these more complex flows. In particular, Davies (1988, 1990) 

investigated, at laboratory scale, a steady, non-uniform debris flow. He overcame any problem 

associated with the finite length of the flume by employing a moving-bed apparatus (Fig. 6). In 

this, a non-uniform wave remains stationary, while the bed moves upwards at constant velocity. 

The channel walls are fixed, while the bed velocity can be adjusted in order that the grains and 

the interstitial fluid remain stationary, on average, with respect to the walls.  

 

 

Fig. 6. Scheme of the moving-bed flume and detail of the corrugated nylon bed (Davies 1988). 

 

The velocity distribution through the depth is similar in shape to the case of a fully-developed 

open channel flow over a erodible bed (Fig. 5), but there is slip at the bed and the mean flow 

velocity respect to the walls is zero. The only important difference from a traditional flume is 

that the wall friction in the moving-bed channel is directed downstream near the bed and 
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upstream away from the bed. The moving-bed flume can only be used to produce debris flow on 

a rigid bed, eliminating the possible analysis of erosion and deposition that would change the 

length of a wave. As a direct consequence, only steady waves can be studied. 

The experimental flume is a 2 m long prismatic channel with a 50 mm wide rectangular section 

and transparent Perspex sidewalls. The moving bed is the grooved side of a corrugated nylon 

belt, with transverse grooves, 2 mm deep and 2 mm wide at 2 mm intervals (Fig. 6). The belt is 

supported by a system of smooth rollers and driven by a variable-speed electric motor. The fluid 

volume in the system is conserved by closing the ends of the flume; the loss of fluid from the 

belt rolling over the flume is prevented by Perspex strips. Grain barriers consisting of perforated 

steel plates prevent the jamming of particles in the lower rollers. 

 

 

Fig. 7. The process of formation of the debris flow wave: a) uniform flow of water at a given 

slope and belt speed; b) the introduction of grains increases the flow resistance and, therefore, 

the flow depth to reach an equilibrium - if sufficient particles are added, an end wave appears in 

the channel; c) if the limit concentration of particles that can be carried by the uniform flow is 

exceeded, a bulbous wave of high concentration forms at the downstream end (Davies 1988). 
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The particles used in the experiments were dark green plastic cylinders, with a 4 mm diameter at 

the base and a height of 4 mm. About 10% of the grains were painted white and used as tracers. 

A small number of cylinders, 8 mm high with a base diameter of 8 mm, were introduced in the 

flow to study their behavior in a flow of smaller grains. The density of the particles was close to 

1400 kg/m3 and their maximum natural volume concentration was estimated to be 56%. The 

fluid used in most experiments was water at room temperature. The slope of the channel bed was 

adjusted within the range 5° to 19° and the belt speed varied between 0.25 m/s and 1.17 m/s. 

Rapid sequences of photos taken by a 35 mm motor-driven camera with a clock in the field of 

view were used to measure the belt speed, the channel slope, the wave size and shape, the grain 

concentrations, the local grain velocities, and the depth of the uniform flow. Video films were 

also used for tracking individual particle trajectories. 

Stationary grain-water waves were easily obtained at any belt speed for slopes larger than 5°. For 

any belt speed and slope, uniform conditions could be established (Fig. 7a) upon the introduction 

of an adequate amount of water. For an excess volume of water, a pool forms at the downstream 

end of the flume, while uniform flow conditions persist upstream. On the contrary, if the water 

volume is too small, an end wave develops, while the flow upstream is still uniform. Starting 

from the condition represented in Fig. 7a, the introduction of particles increases the flow 

resistance and, therefore, the flow depth to reach equilibrium. As a consequence, if sufficient 

particles are added, an end wave appears in the channel (Fig. 7b). However, there is a limiting 

concentration of particles that can be carried by the uniform flow; if this is exceeded, a bulbous 

wave of high concentration forms at the downstream end (Fig. 7c). 

The head wave produced in the moving-bed flume showed a series of consistent features: they 

consist mainly of a body, in which the flow is nearly uniform, that extends from a sharply curved 

front to a uniform sloping tail. The depth of the body increases as the belt speed increases, but it 

depends very weakly on the belt speed. The body depth is not affected by the total volume of 

particles, which induces an increase of the length of the body when it is increased. Finally, for 

bed slopes larger than 7°, the angle made by the surface of the tail with the horizontal is not 

affected by the bed slope, belt speed, or solids volume and assumes values of 7° ± 0.5°. 

The analysis of particle velocity and granular concentration showed the largest concentration at 

the front of the debris flow and the smallest at the tail and at the free surface of the body. 

Relatively small values of the volume fraction were also observed within the body close to the 

bed, where the shear reaches the maximum values and the agitation of particles is enhanced. The 

shear reduces as the distance from the bed increases and, finally, the velocity becomes relatively 

uniform in the upper part of the body. As a main consequence, in the upper part of the front and 

of the body grains moved like a plug, with contact times of the order of one second. In this 

region, the free surface of the water was slightly below the top surface of the grains. The tail is 

different; it characterized by quite rapidly sheared grains close to the free surface and by the 

presence of water above them. Velocity observations from above did not show appreciable 

velocity variations across the channel width in any regions of the flow domain.  
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In some experiments, about 50 larger particles were inserted in the flume. When the maximum 

flow depth was thinner than about three times their diameter, the larger particles were 

concentrated at the front of the wave. For deeper flows, the large grains appeared almost 

uniformly distributed in all the regions of the flow in which the depth exceeded three times their 

size, except for the tail. 

Flows on slopes above 5° showed either free surface instability in the form of roll waves or non-

uniformity in the form of stationary waves. The latter phenomenon is typical of very dense 

flows, in which small local increases of the concentration can increase the flow resistance and 

reduce the speed, until more liquid and granular material accumulates from upslope, forcing the 

flow down slope again. 

 

3. Modeling 

3.1 Uniform flow 

Although typical debris flow motion may be unsteady and develop through surges (Iverson 

1997), the capability of a theory to reproduce the behavior of a granular-fluid mixture in well-

controlled, uniform flow conditions seems a sine qua non requirement for its application to 

unsteady cases. 

In debris flows, particle-particle-interactions, in instantaneous or enduring contact between the 

grains, and fluid-particle interactions determine the flow. The fluid transmits direct forces to the 

particles through drag and buoyancy and also influences the particle-particle interactions. The 

interactions between particles have been investigated in numerical simulations in dry granular 

flows (e.g., da Cruz, et al. 2005); their nature depends on the value of the particle concentration. 

At low concentrations in dilute flows, collisions dominate and the position and velocity of a 

single grain is uncorrelated with those of the others; at high concentration in dense flows, both 

correlated motions between the grains (Kumaran 2009) and possible long-lasting frictional 

contacts (da Cruz, et al. 2005) must be considered. Iverson (1997) indicates that the particle 

concentration in typical debris flows is between 0.4 and 0.6, so most of the flow is dense. 

Consequently, when modeling the global behavior of a debris flow, we ignore the possible 

presence of dilute regions in the flow. We focus on collisions because the experiments of Tubino 

and Lanzoni (1993), Armanini et al. (2005), and Larcher et al. (2007) indicate that collisions 

between particles are the dominant mechanism of momentum transport in large regions of the 

laboratory flows and because collisions seem to us to play an important role in Davies’ (1988, 

1990) experiments. 

Kinetic theories (e.g., Garzo & Dufty 1999) have been successfully developed to derive 

constitutive relations from a characterization of the collisional interactions between particles; at 

low concentrations, these interactions are characterized by the coefficient of restitution, the ratio 
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of magnitudes of the relative velocities of two particles before and after a collision; this 

coefficient is less than unity in an inelastic collision. A characterization of the particle 

interactions at high-concentrations is far more complicated. Two approaches have been recently 

proposed that lead to relations between the stress and the motion in dense granular flows, at least 

in dry situations. 

The French group GDR MiDi (2004) considers steady, dense, planar, shearing flows and focuses 

on the particle concentration c and ratio µ of the particle shear stress s and the particle pressure p. 

On the basis of dimensional analysis, they assert that in such dry flows, c and µ are unique 

functions of the inertial parameter ( )
1/2

/ /≡ �I p cγ , where γ�  is the strain rate, to be determined in 

numerical simulations or physical experiments. The inertial parameter is the ratio between time 

scales associated with particle motions parallel and perpendicular to the flow, respectively. Such 

a phenomenology lacks a constitutive relation for the particle pressure; it is determined through 

the momentum balance in the direction perpendicular to the flow (Jop et al. 2005; Cassar et al. 

2005). However, with this determination of the pressure, the formulation permits easy solutions 

for the flow fields, because of the explicit relation between the particle shear stress and the strain 

rate.  

Numerical simulations of shearing flows of circular disks (Mitarai and Nakanishi 2005) indicate 

that the main effect of the correlated motion between particles is to decrease the rate of 

collisional energy dissipation. This motivated Jenkins (2006, 2007) to propose a 

phenomenological correction to this term to be employed in existing kinetic theories. Dissipation 

in frictional contacts among the particles can also be incorporated using an effective restitution 

coefficient (Herbst et al. 2000). Consequently, this extended kinetic theory can be used to model 

more general dense, dry, granular flows. 

In addition, Jenkins (2007) has shown that in regions of constant concentration away from 

boundaries in planar shearing flows, the extended kinetic theory and the GDR MiDi rheology 

can be linked, at least in flows in which collisions are the dominant means of momentum 

transfer. This provides a more physically-based justification of the use of the latter, which is 

simpler, when attempting to describe sufficiently thick flows. Also, it implies that the relation 

between the stress ratio on the inertial parameter in the simpler description should depend on the 

restitution coefficient.  

When a fluid is present, the restitution coefficient, usually assumed constant in dry granular 

flows, is a function of the Stokes number (e.g., Zenit and Hunt 1998), a measure of particle 

inertia relative to the viscous force. For small enough values of the Stokes number, collisions are 

perfectly inelastic. In this case, a description of the flow based on purely collisional momentum 

transfer becomes suspect; although it has been suggested that in the GDR MiDi rheology, the 

transverse time scale in the inertial parameter associated with the pressure could be replaced with 

one associated with the viscous force (Cassar et al. 2005). Low values of the Stokes number are 



15 

 

typical of fine sediments. Larger sediments are characterized by low Stokes numbers only in a 

small region of vanishingly small velocity. Iverson (1997) indicates that in a typical debris flow, 

the content of fine sediments (silt and clay-sized grains) is less than 10% of the mass, the rest 

being composed of sand, gravel and larger boulders. 

A two-phase model developed by Berzi and Jenkins (2008a, b; 2009) treats dense granular-fluid 

mixtures in which the inertia of cohesionless particles dominates fluid viscous forces in most of 

the flow and particle chains that do not span the flow may contribute to the transfer of 

momentum. The approach differs from previous treatments (e.g., Iverson 1997 2009, Pittman 

and Le 2005) in that it distinguishes between the depths and velocities of the particle and fluid 

phases. Here, we briefly summarize and further simplify a form of this theory that describes the 

uniform propagation of the granular-fluid mixture along an inclined bed. In this case, the bed is 

rigid and hence easy to locate, provided deposition does not occur.  

When deposition does take place, a particle bed develops that is stationary, at least on the time-

scale of laboratory experiments (Komatsu et al. 2001). The mechanics of the bed is different 

from that of the shearing flow. In the bed, particles form chains of contacts along the principal 

axes of compression and experience intermittent jumps out of the chains rather than continuous 

shearing. These chains provide a rate-independent resistance to shearing, but allow the bed to 

creep. Because the flow velocity at the bed is continuous and vanishes slowly with depth 

(Takahashi 1991; Armanini et al. 2005), the exact location of the erodible bed is difficult to 

specify.  

We first apply the model to a steady, uniform flow in order to test against recent experiments 

carried out on such flows, which are discussed in Section 2. Details of the derivations are given 

by Berzi and Jenkins (2008b; 2009) and Jenkins and Berzi (2010) and Berzi et al. (2010a, b) 

discuss the further simplifications that we employ here.  

We let ρ denote the fluid mass density, g the gravitational acceleration, σ the particle specific 

mass, d the particle diameter, η the fluid viscosity, U the fluid velocity, and u the particle 

velocity. The Reynolds number R = ρd(gd)1/2/η� is defined in terms of these. In what follows, 

we phrase the momentum balances and constitutive relations in terms of dimensionless variables, 

with lengths made dimensionless by d, velocities by (gd)
1/2

, and stresses by ρσgd. 

We take z = 0 to be the top of the grains, z = h to be the position of either a rigid or erodible bed 

of inclination θ, and H to be the height of the water above the bed. The degree of saturation, H/h, 

is greater than unity in the over-saturated flows and less than unity in the under-saturated. In the 

latter case, a plug of extent ζ can be present in the upper part of the flow. These flows are again 

depicted in Fig. 8, together with a generic velocity profile for the particles. 
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Fig. 8. Sketch of steady, (a) over- and (b) under-saturated, uniform flows over rigid and erodible 

beds. 

 

We assume that it is possible to apply the GDR MiDi rheology and that the stress ratio and the 

concentration are approximately linear functions of the inertial parameter, as in numerical 

simulations of highly concentrated flows of disks (da Cruz et al. 2005), 

= +
�

Iµ µ χ  (1) 

and = −
�

c c bI , where 
�
µ  and 

�
c  are the minimum stress ratio and the maximum concentration, 

respectively, and χ and b are material coefficients. In the flow configurations of Fig. 8, ′= −� uγ  

must be used in the definition of the inertial parameter; where here and in what follows, a prime 

indicates a derivative with respect to z. Also, we assume that the particle pressure, p, is the 

effective pressure, i.e. the total particle pressure minus the pore pressure, if present. The 

quantities µ
�

 and c
�

 can be interpreted as the tangent of the angle of repose and the concentration 

at dense, random packing, respectively. As mentioned above, the relation between the stress ratio 

and the inertial parameter should depend on the value of the Stokes number, which varies with 

position in the flow. We assume that the linear rheology (1) also holds when an interstitial fluid 

is present; in this case, the coefficients µ
�

, c
�

, χ and b incorporate the influence of the Stokes 

number. Consequently, the coefficients are not expected to be the same for dry granular flows 

and granular-fluid mixtures that consist of the same particles. 

In the region in which both phases are present, the balances of fluid momentum transverse and 

parallel to the flow are 

cos /′ =P θ σ , (2) 

and 
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( ) ( )1 sin / / ,' − − −= c cC U uS θ σ σ  (3) 

respectively, where P is the fluid pressure, S the fluid shear stress, and C is the dimensionless 

drag, 

( ) ( )3.1
/ 10 18.3 / / 1 ,3≡ − + −C U u R c  (4) 

introduced by Dallavalle (1943), with the concentration dependence suggested by Richardson 

and Zaki (1954). When an upper, clear fluid layer is present, the distribution of the fluid shear 

stress can be obtained from (3) with c = 0. 

The balances of particle momentum transverse and parallel to the flow are 

( )1 1/ cos′ = −p cσ θ , (5) 

and 

( )sin /′ = + −s c cC U uθ σ , (6) 

respectively. The corresponding balances when an upper dry layer is present can be obtained 

from Eqs. (5) and (6) by letting σ become infinite. The fluid drag in Eq. (6) is, through the 

balance (3), the mechanism by which the weight of the fluid along the flow is transferred to the 

particles; this increases their mobility. Here, we ignore forces due to the lateral confinement of 

the flow. We will discuss this later. 

As does Iverson (1997), in the mixture, we ignore the shear stress in the fluid relative to gravity 

and drag and, in the clear fluid layer, we assume that the turbulent mixing length is proportional 

to the thickness of the layer: 

2 2
( ) ,′ ′= − −S k H h U U  (7) 

where k = 0.20, half the value of Karman’s constant. Takahashi (1991) previously made use of 

Eq. (7), but also took into account the fluid shear stress in the mixture, assuming the mixing 

length there be proportional to the average distance between the particles. We call this the small-

scale turbulence approximation to distinguish it from the approximation in which the mixing 

length is proportional to the fluid depth, H. Our earlier calculations (e.g., Berzi and Jenkins 

2009) indicate that global quantities, such as the volume fluxes of particles and fluid and the 

angle of inclination of the free surface, are unaffected by the choice of the turbulence 

approximation. 

Assuming that the concentration is approximately constant and at its maximum value, =
�

c c , and 

considering the surface at z = 0 as free of particle stress, it is possible to obtain the particle stress 

ratio, µ, as a function of z from the momentum balances (2), (3), (5) and (6) (Berzi and Jenkins 

2009). The resulting expression is phrased in terms of two functions, α and β, of the degree of 



18 

 

saturation that permit a single expressions for a flow quantity to be written over the entire range 

of saturation: /= H hα  in an under-saturated flow and unity otherwise, and /= H hβ  in an 

over-saturated flow and unity otherwise. The result is 

( ) ( ){ }
( ) ( )

1 1 sin ( 1)sin

1 cos 1 cos

+ − − −  − 
= +

− + − − + −      

� �

� �

c z c z h h

z z h c z z h c

σ α θ β θ
µ

σ α θ σ α θ
. (8) 

Because of its relationship to the shear rate, the stress ratio can be seen as a measure of the 

mobility of the particles. This mobility is increased by the presence of the interstitial fluid: the 

apparent weight in the direction of the flow (the numerator of the first term on the right-hand 

side) increases due to drag; the apparent weight perpendicular to the flow (the denominator of 

both terms on the right-hand side) decreases due to buoyancy; and the shear stress associated 

with a layer of clear fluid above the mixture (the numerator of the last term on the right-hand 

side) forces particles in the direction of flow. 

Where no fluid is present, Eq. (8) reduces to tan=µ θ . Given that a shear rigidity develops when 

the stress ratio is below the tangent of the angle of repose, the upper dry layer is either totally 

sheared, when tan >
�

θ µ , or there is a plug, when tan ≤
�

θ µ . Then, the base of the plug 

approximately coincides with the top of the fluid, in under-saturated flows. The distribution of 

the particle shear rate is obtained when the particle rheology (1) is employed in Eq. (8), with 

( ){ }
1/2

/ 1 (1 ) cos′= − − + −  I u z hσ σ α θ  in the mixture layer and either ( )
1/2

/ cos′= −I u z θ  or, if 

there is a plug, I = 0 in the dry layer. The distribution of the particle effective pressure is 

obtained from Eq. (5). Berzi et al. (2010a) give the distributions of the particle velocity in the 

mixture and in the upper dry layer when the turbulent fluid shear stress in the mixture is 

neglected, and Berzi and Jenkins (2009) provide those that result when the turbulent fluid shear 

stress in the mixture is taken into account. 

For simplicity, we adopt the vanishing of the particle velocity as a boundary condition at the bed. 

Given that a slip velocity was observed for flows over rigid beds in experiments (Armanini et al. 

2005) and that erodible beds creep (Komatsu et al. 2001), this boundary condition is another 

approximation in the model. With it, the distribution of the particle velocity can be more easily 

integrated to obtain the average particle velocities, um and udry, in the mixture and in the upper 

dry layer, respectively. With these, the total depth-averaged particle velocity, 
Au , is  

( )1= + −A m dryu u uα α , (9) 

and the particle volume flux per unit width, q, is 
�

Achu . Upon employing the expressions of um 

and udry in Eq. (9), and assuming that the incline is mild, so that cos 1≈θ  and sin tan≈θ θ , we 

obtain the depth-averaged particle velocity as 
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( ) 3/ 2

1 2tan
A

u hλ θ λ= − , (10) 

where the coefficients λ1 and λ2 are functions of σ, χ, µ
�

, 
�
c  and, through α and β, the degree of 

saturation. Expressions for them are given in Table 1. 

The relation (10) between the average particle velocity, particle depth, and inclination is a 

reflection of the local rheology (1). It indicates that the global shear rate, uA/h, of the particles, 

scaled with the square root of their transverse buoyant weight, varying with h, is proportional to 

the excess of the global stress ratio with respect to a yield. The global stress ratio is given in Eq. 

(8) as the sum of the drag and the flow component of the particle weight divided by their 

transverse buoyant weight; it is proportional to tanθ . 

 

Table 1. Coefficients in Eq. (10) for the total depth-averaged particle velocity. 

λ1 when 

tanθ µ≤
�

 
( )

( )( ) ( ) ( ) ( ){

( )( ) ( ) ( ) ( ) ( ) ( ) }

3/2 5/23/2

31/2

1/2 3/21/2

2
3 5 2 3 5 1 1

15 1

5 3 2 3 1 1 1 1

c c
c

σ α σ α σ σ α σ
χ σ σ

σ α σ α σ σ α σ β σ α

 − + − − − − + −
 −

 + − + − − − − − − − −   

� �

�
 

λ1 when 

tanθ µ>
�

 

( )
( )( ) ( )( ) ( ){

( )( ) ( ) ( ) ( )( ) ( )

( ) ( ) }

3/2 5/23/2

31/2

1/2 3/21/2

3 5/21/2

2
3 5 2 3 5 1 1

15 1

5 3 2 3 1 1 1 1

3 1 1

 − + − − − − + −
 −

 + − + − − − − − − − −   

+ − −

� �

�

�

c c
c

c

σ α σ α σ σ α σ
χ σ σ

σ α σ α σ σ α σ β σ α

σ σ α

 

λ2 when 

tanθ µ≤
�  ( )

( ) ( ) ( )( )
3/2 5/23/2

21/2

2
3 5 2 3 5 1

15 1
σ α σ α σ σ α µ

χσ σ
 − + − − − −
 −

�  

λ2 when 

tanθ µ>
�  

( )
( )( ) ( ) ( )

( ) ( )

3/2 5/23/2

21/2

2 5/21/2

2
3 5 2 3 5 1

15 1

3 1 1

σ α σ α σ σ α
χσ σ

σ σ α µ

 − + − − − −
−

+ − −

�

 

 

Because the theory is fully two-phase, it is possible to also determine the total depth-averaged 

fluid velocity in terms of the average fluid velocities in the mixture and in the upper clear fluid 

layer, Um and Ucm, respectively:  

( ) ( ) ( )1 1 / 1 1 .= − + − − + −      
� �

A m cm
U c U U cα β α β  (11) 

The fluid volume flux per unit width, Q, is, then, ( ) ( )1 1− + −  
�

AU c h hα β . 
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With the drag balancing the component of the fluid weight along the flow, the difference 

between the fluid and the particle velocity obtained from Eq. (4) is an order of magnitude less 

than the particle velocity in the typical mixtures of water and granular material used in the 

laboratory experiments (Tubino and Lanzoni 1993; Armanini et al. 2005; Larcher et al. 2007). 

Therefore, in the steady, uniform flows, we take Um ≈ um; but retain the difference in the heights 

of the fluid and particle phases. We obtain the average fluid velocity in the upper, clear-fluid 

layer from successive integrations of Eq. (7) with the fluid shear stress given by Eq. (3) in the 

absence of particles. Finally, the total depth-averaged fluid velocity is 

( ) ( )
1/23/2 1/2

1 2 3tan tan= Λ − Λ + Λ
A

U H Hθ θ , (12) 

where Λ1, Λ2 and Λ3 are functions of σ, χ 
�
µ , 
�
c , k and /≡ H hξ . Their expressions are given in 

Table 2. 

 

Table 2. Coefficients in Eq. (12) for the total depth-averaged fluid velocity. 

Λ1 

( )

( ) ( )
( )( ) ( ){

( ) ( ) ( )

( )( ) ( ) ( )( ) ( )

( ) ( ) }

3/2 5/25/2

33/2 1/2

5/2

1/2 3/23/2

2 5/2

2 1
5 3 2 2 1

15 1 1 1

5 1 1 1

5 3 2 2 1 1 1 1

15 1 1

−  − − − + −
− − + −  

+ − − + −


 + − − − + − − − − −   

+ − −

�

� �

� �

c

c c

c c

ασ α σ σ α σ α
ξ χ σ σ α β

σ β σ

ασ α σ σ α σ α σ β σ α

β σ

 

Λ2 
( )

( ) ( )
( )( ) ( ) ( ) ( )

3/2 5/2 5/25/2

23/2 1/2

2 1
5 3 2 2 1 5 1 1

15 1 1 1

−
 − − − + − + − −
 − − + −  

�

�

�c

c
ασ α σ σ α σ α σ β

ξ χσ σ α β
µ  

Λ3 
( )
( )

3/2

1/2

2 1

5 1 1

−

− + −  
�

k c

β

ξ α β
 

 

 

Eq. (12) indicates that the global shear rate, UA/H, of the fluid is the sum of two contributions: 

the first is proportional to the global shear rate of the particles, as in Eq. (10); the second is 

proportional to (tanθ/H)
1/2

, from the turbulence in the upper clear-fluid layer, as in the Darcy-

Weissbach equation for turbulent fluids (Chow 1959). 

The two expressions (11) and (12) for the total depth-averaged velocities relate the five variables 

uA (or equivalently q), UA (or equivalently Q), h, H, and tanθ . That is, in a steady, uniform, 

inclined flow of a granular-fluid mixture, three of these variables can be specified independently. 



21 

 

For example, we can specify the particle and fluid volume fluxes and the angle of inclination of 

the bed and determine the particle and fluid depths. There is, however, a key experimental 

observation for flows over an erodible bed (Armanini et al. 2005): the slope of the bed is not 

predetermined, as for the rigid bed, but is coupled with the volume fluxes. 

In the above analysis, a no-slip condition was employed for both rigid and erodible beds. 

However, at an erodible bed and at a plug, it is more appropriate to prescribe the particle stress 

ratio as a yield condition. As in the particle rheology (1), this stress ratio is equal to the tangent 

of the angle of repose. However, Eq. (8) indicates that in moving from the free surface towards 

the bed in an under-saturated flow, the stress ratio increases monotonically, and that in a fully-

saturated flow, it is constant. Consequently, the specification of a yield condition would lead to 

the impossibility of such flows over an erodible bed, in contrast to what is seen in the 

experiments of Armanini et al. (2005). In the context of the simple theory presented above, the 

resolution of this paradox is the inclusion, in an approximate way, of forces associated with the 

lateral confinement of the flow. 

In a rectangular channel with frictional sidewalls a distance W apart and coefficient of sliding 

friction µw, the frictional resistance to particle flow increases from the free surface to the bed. It 

influences the value of the stress ratio at the bed and, therefore, the particle depth. The particle 

depth is obtained by introducing the frictional force in Eqs. (6) and (8) and taking =
�

µ µ  at 

=z h : 

( ) ( )

( )2

1 1 tan+ − + − − −  =
−

� � � �

�

w

c c c
h W

c

σ α β θ σ α µ

σ α µ
. (13) 

In an over-saturated flow, the presence of a lateral confinement is not required for yield at an 

erodible bed; in this case, the influence of the lateral confinement can be neglected in Eq. (8) if 

/
�

�wh Wµ µ , or when
�
∼wµ µ , if / 1�h W . In the latter case, Eq. (13) reduces to 

( ) ( )tan 1 / 1 .= − − +  
� � �
c cθ σ µ σ β  (14) 

Equation (13) or (14) provides an additional relation that reduces the number of unknowns for a 

flow over an erodible bed. Finally, it is worth noting that more fundamental theories than that 

outlined here, e.g. the extended kinetic theory of Jenkins (2006), also requires an additional 

boundary condition (e.g., Jenkins and Askari 1991) to determine the position of the bed. 

The approximate theory outlined above and summarized in Eqs. (10) and (12) and, for a flow 

over an erodible bed, Eq. (13), is an advance over previous theoretical frameworks. For example, 

Takahashi’s (1991) two-phase model for the uniform motion of over-saturated debris flows is 

based on a modified version of the dilatant model for the particle shear stresses in the inertial 

regime described by Bagnold (1954); it takes into account the difference in heights between the 

particles and the fluid, the dependence of the stress ratio on the particle concentration, and 
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incorporates the effects of the fluid turbulence. However, the theory is incomplete, because it 

cannot treat under-saturated debris flows. In addition, it does not incorporate yield of the particle 

phase that is present in many steady granular flows (Pouliquen 1999a; Cassar et al. 2005) and 

that is necessary to model the time-dependent transitions between statics and flow that are 

characteristic of surges (Iverson 1997). 

Other two-phase models have been proposed by Iverson (1997, 2009) and Pitman and Le (2005); 

however, these do not allow for a degree of saturation different from unity and the resistance at 

the base of the flow is taken to be sliding friction. A consequence of the latter assumption is that 

the stress ratio at the bed, proportional to tanθ , is independent of the average velocity; this 

prevents an explanation of the experimentally observed dependence of the total depth-averaged 

particle velocity on the depth and slope in uniform flows (Tubino and Lanzoni 1993; Armanini et 

al. 2005). In the context of the present theory, these dependencies are captured in Eq. (10). 

The superiority of two-phase models with respect to single-phase rheological models, in which 

the debris flow is modeled as a type of non-Newtonian fluid, has already been emphasized by 

Iverson (1997). Such models may be appropriate when the solid phase is composed of fine 

sediments, as in mud flows (e.g., Davies 1986). 

In Table 3, we summarize the values of the four material parameters 
�
c , 
�
µ , χ  and wµ , present 

in Eqs. (11), (12) and (13), that permit the reproduction of the experiments of Armanini et al. 

(2005) and Tubino and Lanzoni (1993) on steady, uniform flows of granular-fluid mixtures 

described in the previous section. For completeness, we also report in Table 3 the values of the 

parameters that apply to the uniform flow of dry glass spheres experimentally investigated by a 

(1999) and Jop et al. (2005), respectively.  

As anticipated, the interstitial fluid affects the material parameters in the linear rheology (1); the 

minimum value of the stress ratio for glass spheres decreases to 0.34 from its value of 0.38 in dry 

conditions. Also, the particle diameter seems to play a role in the value of the minimum stress 

ratio: µ
�

 is less for gravel A than for gravel B, according to the measurements of the angle of 

repose of the two materials in dry conditions made by Tubino and Lanzoni (1993). 

In Fig. 9a, comparisons between the theory outlined above with the results of experiments for 

flows over erodible beds are shown as the flux ratio, q/(q+Q), versus tanθ . An alternative would 

be to show the depths versus tanθ . We choose the flux ratio because it is only marginally 

affected by the relatively small variation of the fluid volume flux for the experiments reported in 

Table 3, although the relation between it and tanθ  is not unique for a particular set of 

parameters. Hence, the lines in Fig. 9a refer to theoretical results obtained keeping Q constant 

and equal to the mean of the experimental range in Table 3 and =
�

Aq cu h , with uA and h provided 

by Eqs. (12) and (13). Also, we prefer to use the flux ratio because, as already mentioned, the 

position of the erodible bed, and therefore the evaluation of the particle and fluid heights above 

it, is still in question. In addition to this uncertainty in the location of the bed, the measurements 
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of the depths are local, in the sense that they are usually obtained through optical measurements 

of the flow field close to the sidewalls, and are, therefore, influenced by its presence (Armanini 

et al. 2005).  

 

Table 3. Experimental conditions and fitted values of the material coefficients  

Reference Particles Fluid Geometry q Q c
�

 µ
�

 χ  
wµ  

Jop et al. 

(2005) 

Glass spheres 

(d = 5.0 mm, 

σ = 2.60) 

No 

fluid 

Rectangular flume 

(width = 1 to 30 cm) 

with glass sidewalls 

1.0/65.0 - 0.60 0.38 0.60 0.22 

Armanini 

et al. 

(2005) 

Plastic cylinders 

(d = 3.7 mm, 

σ = 1.54) 

Water 

Rectangular flume 

(width = 20 cm) 

with glass sidewalls 

10.3/40.2 18.0/37.8 0.50 0.50 0.60 0.35 

Tubino 

and 

Lanzoni  

(1993) 

Glass spheres 

(d = 3.0 mm, 

σ = 2.60) 

Rectangular flume 

(width = 20 cm) 

with polycarbonate 

sidewalls 

5.1/47.6 15.5/22.3 0.60 0.34 0.60 0.19 

Gravel A 

(d = 5.0 mm, 

σ = 2.65) 

3.2/29.4 5.4/14.9 0.60 0.47 0.50 0.35 

Gravel B 

(d = 3.0 mm, 

σ = 2.65) 

3.9/44.7 11.7/27.2 0.60 0.52 0.50 0.39 

 

The theoretical curves show some distinctive features. There is an initial rapid growth of the flux 

ratio with tanθ  for low values of the free surface inclination; this corresponds to over-saturated 

flows. When the flux ratio reaches a value near 
�
c , its increase with tanθ  is much less 

pronounced; this corresponds to under-saturated flows that involve a plug that extends up to the 

free surface. The kink in the curve corresponds to the saturated flow. 

Armanini et al. (2005) report experiments on both over- and under-saturated flows and, as 

depicted in Fig. 9a, they show the features predicted by the theory. In contrast, Tubino and 

Lanzoni (1993) report on experiments only for saturated and over-saturated flows. Despite this, 

as seen in Fig. 9a, they do not observe the kink when the flux ratio is close to c
�

, set equal to 0.60 

for both the glass spheres and the gravel - very close to the values measured by Tubino and 

Lanzoni (1993) in static packings. Assuming that the values of c
�

 are correct, values of the flux 

ratio so much higher than c
�

 in nearly saturated flows are possible only if the mean particle 
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velocity is much higher than the mean fluid velocity. Given that we expect the fluid be slightly 

faster than the particles in the layer where both phases are present, this is possible only if the 

flow is under-saturated and the upper dry layer is sheared. In the theory, the upper dry layer can 

be sheared only if tanθ > µ
�

. However, for the experiments of Tubino and Lanzoni (1993), the 

calculated depth of this upper dry layer is less than one diameter. It is, therefore, likely that the 

particles there are not actually dry - an indication that capillarity can play an important role in 

laboratory experiments. 
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Fig. 9. (a) Experimental (symbols) and theoretical (lines) flux ratio versus tangent of the angle of 

inclination of the free surface for a mixture of water and: plastic cylinders (squares and solid 

line) flowing over erodible beds; glass spheres (circles and dashed line); gravel A (crosses and 

dot-dashed line); gravel B (triangles and dotted line). (b) Experimental (symbols) and theoretical 

(lines) particle volume flux versus particle depth for a nearly saturated mixture of water and 

plastic cylinders flowing over a rigid bed of: θ = 19° (dashed line); θ = 23° (solid line). 

 

In Fig. 9b the comparison between the theory and the few available experiments on the nearly 

saturated flow of water and plastic cylinders over a rigid bed are depicted in terms of particle 

volume flux against particle depth, where, once again, =
�

Aq cu h , with uA given by Eq. (12) and 

α = β = 1 in the coefficients of Table 1. The theoretical curves are evaluated for the minimum 

and the maximum angles of inclination of the rigid beds investigated in the experiments. The 

agreement is, again, remarkable. 

 

3.2 Non-uniform flow 

We now turn to the analysis of the unsteady, non-uniform regime, considered by many (Iverson 

1997, 2009; Hungr 2000) to be characteristic of debris flows. In unsteady, non-uniform motions, 

the debris flow may either erode or deposit granular material from or to the bed (e.g., and Young, 

1998, Fraccarollo and Capart, 2002). The erosion and deposition rates are determined by the 
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transition between the flowing and the static states. Sufficiently dense static states are 

characterized by the fact that the granular material must expand in order to flow (Iverson 2009; 

Pailha and Pouliquen 2009). In the model described here, the transition between the flowing and 

the static state is controlled by the value of the particle stress ratio; hence, a relation between the 

local particle stress ratio and the dilation or compaction of the granular material near the 

transition must be provided. This would permit the description of the evolution of the interface 

between the flow and the bed. That is, flow initiates locally, somewhere in the static heap, and 

propagates into the material above. This is different from the approach of Iverson (2009) and 

Pailha and Pouliquen (2009), who describe the dilation and compaction as involving the entire 

granular material at once. Here, we defer the modelling of erosion and deposition and focus on 

unsteady flows over rigid beds at which particles are neither lost nor gained. 

A sketch of the flow configuration and the coordinate system is depicted in Fig. 10. In contrast to 

Fig. 8, the origin of the Z-axis is at the rigid bed of inclination φ and the coordinate Z increases 

towards the free surface. The origin of the x-axis is taken to be somewhere upslope. The fluid 

and particle depths are now a function of position x and time t, so that in general h(x,t) and H(x,t) 

are not parallel to the rigid bed, as in uniform flows. When particle and fluid snouts are present 

as in the later analysis of steady waves over a rigid bed, we indicate their position by x
*
 and X,

*
 

respectively.  

 

φ

horizontal

X *

x * x

Z

Η(x,t)h(x,t)

 

Fig. 10. Sketch of a non-uniform flow over a rigid bed. 

 

The mass balance for the fluid is 

0,
U V

x Z

∂ ∂
+ =

∂ ∂
 (15a) 

if ,≤ ≤h Z hβ  and 
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( ) ( ) ( )1 11
0,

c U c Vc

t x Z

∂ − ∂ −   ∂ −    + + =
∂ ∂ ∂

 (15b) 

if 0 ;≤ ≤Z hα while that of the particles is 

( ) ( )
0,

cu cvc

t x Z

∂ ∂∂
+ + =

∂ ∂ ∂
 (16) 

where V and v are the fluid and the particle velocities in the Z-direction. 

When the slope of the rigid bed is assumed to be mild, sin tanφ φ≈ , and the longitudinal 

momentum balance for the fluid may be written as 

1 1
tan ,

∂ ∂ ∂ ∂ ∂ 
+ + = + − 

∂ ∂ ∂ ∂ ∂ 

U U U S P
U V

t x Z Z x
φ

σ σ
 (17a) 

if ;≤ ≤h Z hβ  and 

( )
( )11 1

tan ,
∂ − − ∂ ∂ ∂ − ∂ ∂   + + = − − + − − 

∂ ∂ ∂ ∂ ∂ ∂ 

c Pc U U U c c S c
U V C U u P

t x Z Z x x
φ

σ σ σ
 (17b) 

if 0 Z h,≤ ≤ α  where the term involving the derivative of concentration along the flow accounts 

for the buoyancy of the particles (Drew and Passman 1999). The present treatment of the 

buoyancy is consistent with the deeper analysis performed by Pitman and Le (2005). Similarly, 

the longitudinal momentum balance for the particles is 

tan ,
∂ ∂ ∂ ∂ ∂ 

+ + = + − 
∂ ∂ ∂ ∂ ∂ 

u u u s p
c u v c

t x Z Z x
φ  (18a) 

if ,≤ ≤h Z hα  and 

( )
( )1

tan ,
∂ +∂ ∂ ∂ ∂ ∂ 

+ + = + − + − + 
∂ ∂ ∂ ∂ ∂ ∂ 

p cPu u u s c
c u v c cC U u P

t x Z Z x x
φ

σ
 (18b) 

if 0 Z h,≤ ≤ α  where p+cP is the total particle pressure, assumed to be isotropic. The latter 

assumption is in contrast to that employed in models that originate in soil mechanics (Savage and 

Hutter 1989; Iverson 1997, 2009). In these, the ratio of the particle normal stress parallel and 

perpendicular to the flow is taken to be a coefficient different from unity. The determination of 

this earth pressure coefficient is based on the assumption that the granular material internal to the 

flow is at yield (Savage and Hutter 1989). In our model, this condition holds only at the erodible 

bed and at the plug. In the absence of experimental evidence of anisotropic normal stresses in the 

flow (cf., Hungr 1995), we assume isotropy. 
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The mass balances (15) and (16) are averaged through the total depth of the flow over a rigid 

bed, assuming that the particle concentration is constant and equal to c
�

, with the depth-averaged 

particle concentration through H denoted by cA: 

( ) ( )1 1
+ =0;

t x

∂ − ∂ −      
∂ ∂

A A Ac H c HU
 (19) 

and 

( )
+ =0,

t x

∂∂

∂ ∂

Ahuh
 (20) 

where 

( ) ( )1 1 1 .− = − + −  
�

Ac H c hα β  (21) 

Similarly, the momentum balances (17a) and (17b) are averaged through the depth and, in the 

resulting equations, the terms that involve the sum of shear stress at the bed and the average drag 

force in the direction of the flow is replaced by its value in a steady, uniform flow. This value, 

denoted by J, is obtained from Eq. (12) by solving for the tangent of the angle of inclination in 

the steady, uniform flow: 

( )
2

1/ 2
2 2 1/ 2

3 3 1 2

1

4
.

2

AH U H
J

H

  −Λ + Λ + Λ Λ +  =  
Λ 

 

 (22) 

With this, the depth-averaged equation is  

( ) ( )
( )

211
1 tan .

 ∂ −∂ −  ∂    + = − − − 
∂ ∂ ∂ 

A AA A

A

c HUc HU H
c H J

t x x
φ  (23) 

In the same way, the depth-averaged equation for the particles is 

( ) ( ) ( )2
1

tan ,
 ∂ ∂ − ∂ ∂  + = − − − 

∂ ∂ ∂ ∂  

AA
hu hhu h

h j
t x x x

βα
φ

σ
 (24) 

where 

2

3/2

1 1

1
.= +Au

j
h

λ

λ λ
 (25) 

The resulting model consists of a system of four partial differential equations in the variables (1-

cA)H, h and the two momenta (1-cA)HUA and huA. In obtaining this system, we made multiple use 
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of Leibniz’s rule for the derivative of an integral, the kinematic boundary condition at a material 

surface, the rigidity of the bed, and the jump condition at the interface between the clear fluid 

and the mixture layer (for more details, see Berzi and Jenkins 2009). In hydraulics (e.g., Chow, 

1959), the quantities J and j are called friction slopes because they characterize the resistance of 

the flow to the force associated with the inclination in steady, fully developed circumstances. 

The solution of the system (19) through (25) requires initial as well as boundary conditions. A 

natural choice for the latter may be the particle and fluid upstream volume fluxes and the particle 

and fluid heights either upstream or downstream, depending on the mathematical nature of the 

system (19)-(25) (for a discussion about the hyperbolicity of a similar two-phase mathematical 

model in which, however, there is no difference in the particle and fluid heights, see Pitman and 

Le 2005). 

The mathematical model is based on the assumption that the distribution of fluid pressure is 

hydrostatic and that the particle effective pressure balances the buoyant weight of the particle 

phase. This is true when the transverse drag force and the inertia associated with the transverse 

acceleration in the Z-momentum balances are neglected. Using scaling arguments, Pitman and Le 

(2005) show that these terms are of the same order of magnitude as the ratio between the flow 

depth and its length; consequently, in the context of a shallow-water theory, their neglect is 

permitted. However, Iverson (1997, 2009) has focused attention on the possibility that because of 

the drag of the particles on the transverse flow of the fluid, the distribution of fluid pressure is 

not hydrostatic. This could influence the mobility of debris flows by reducing the effective 

particle pressure. The arguments that explore this possibility typically disregard the inertia of the 

transverse acceleration - an inconsistency in the depth-averaged mathematical modelling. 

Ignoring this, the retention of the transverse drag force in the Z-momentum balances leads to the 

additional terms /−∂ ∂D x  and /D x+∂ ∂  on the right-hand side of the depth-averaged momentum 

balances for the fluid and the particles, respectively, where  

( )
0

/= −∫ ∫
�h h

D cC V v dZd
α α

ζ
σ ζ  (26) 

is the average transverse drag force.  

To evaluate this term, Iverson (1997, 2009) must assume a fluid pressure distribution, because he 

does not allow for the fluid and particle heights to be different. In the context of our model, D 

can be evaluated in a more natural way as ( ) ( ) ( )
2

/ 2≈ −
�

A AD cC h V vα σ , where VA and vA are the 

average velocities of the fluid and the particles along Z. We assume that VA and vA are 

approximately constant and equal to half the values of the Z-component of the fluid and particle 

velocity at Z = H and Z = h, respectively. The latter are material boundaries, so that 

/ /
Z H Z H

V H t U H x
= =

= ∂ ∂ + ∂ ∂  and / /
Z H Z H

v h t u h x
= =

= ∂ ∂ + ∂ ∂ . With the further 

approximations 2 AZ H
U U

=
=  and 2 AZ H

u u
=

= , the average transverse drag force is 
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( ) ( )
2

1

2 2

∂ − ∂ ∂
≈ + − 

∂ ∂ ∂ 

�

A A

cC h H h H h
D U u

t x x

α

σ
. (27) 

Eq. (27) permits a quantitative a posteriori evaluation of the influence of the transverse drag 

force on the debris flow motion. Its introduction into the mathematical model, although possible, 

would require a more sophisticated numerical method than that adopted here for the 

determination of steady, non-uniform solutions to the system. 

As described in Section 2, there are only a few laboratory experiments on non-uniform debris 

flows to be used to test the mathematical model outlined above. Among them, those performed 

by Davies (1988, 1990) in steady conditions are the most carefully described, and seem to 

possess some features in common with natural debris flows. Consequently, they are a realistic 

test of the present theory for its possible practical applications. 

A wave that translates along an incline without changing its longitudinal profile is called a 

uniformly progressive wave (e.g., Chow 1959). The wave is characterized by the fact that any 

moving material element of extent dx in Fig. 10 has a constant depth-averaged velocity. 

Uniformly progressive waves have already been analysed by Pouliquen (1999b) for dry granular 

flows and by Hungr (2000), using a single-phase model for granular-fluid mixtures. Here, we 

emphasize what are the implications of letting the heights of the fluid and the particles differ, as 

in the theory of Berzi and Jenkins (2009). 

If, in Fig. 10, the coordinate system is in translation with the common depth-averaged velocity, 

both the particle and the fluid depth are functions only of x, and x
*
 and X

*
 are constants. We 

assume, as in Davies’ (1988) experiments, that the wave front is dry, so that X* < x*. With the 

particle and fluid depth-averaged velocities equal and constant at every x, the fluid and particle x-

momentum balances reduce to 

H
tan J

x

∂
= φ −

∂
, (28) 

and, 

( )1 hh
tan j

x x

∂ β − ∂ α  + = φ −
∂ σ ∂

, (29) 

respectively. Solutions of the two ordinary differential equations (28) and (29) provide the 

evolution of the depths h(x) and H(x) once the slope of the rigid bed, tanφ, the common value of 

the average velocities, uA = UA, for the determination of the friction slopes, and two boundary 

conditions, associated with the vanishing of the particle and fluid depths at the snouts, are 

specified. 
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In the dry front, the evolution of the particle depth is governed by Eq. (29), with β = 1, α = 0 and 

( )3/ 25 / 2Aj u hµ χ= +
�

 (Berzi and Jenkins 2009). It is easy to show (Pouliquen 1999b) that from a 

dry front, the particle depth tends monotonically to the value that is the solution of the uniform 

dry flow, j = tanφ. In the context of the model, this value is positive only if the angle of 

inclination of the rigid bed is greater than the angle of repose of the granular material. For the 

plastic cylinders used by Armanini et al. (2005), which are similar, although heavier, than those 

of Davies (1988), this implies that a dry granular front can be present only at angles of 

inclination of the bed greater than, roughly, 26° (from Table 3). However, Davies (1988, 1990) 

observed the presence of a dry front at angles of inclination as low as 10°. 

We note that in Davies’ (1990) experiments, the dense granular-fluid flow developed over a thin 

collisional basal layer (Jenkins and Askari 1999); hence, both the use of the GDR MiDi rheology 

and the assumption of a zero slip velocity at the bed are inappropriate. Despite this, we will show 

that the qualitative behaviour of the steady wave at angles of inclination of the rigid bed greater 

than 26° is in accordance with the observations reported by Davies (1988, 1990). Also, we will 

show that at least some of the quantitative predictions of the theory of Berzi and Jenkins (2009) 

are in good agreement with these experiments. 

As do Berzi and Jenkins (2009), we employ a fourth-order Runge-Kutta method to solve the two 

differential equations (28) and (29). The inclination of the rigid bed, the depth-averaged constant 

velocity, the position, x
*
, and the longitudinal extension, * *

x X− , of the dry front are the input 

parameters. The specification of the latter two parameters is equivalent to the specification of the 

total volume per unit width of the fluid and particles between the snout and the origin of the x-

axis (Berzi and Jenkins 2009); these are the parameters controlled in Davies’ (1988, 1990) 

experiments. At each step of the integration, J and j, which depend on the depth-averaged 

velocities and the fluid and particle depths, are evaluated using Eqs. (22) and (25). 

Here, as in Berzi and Jenkins (2009), we present the results for the steady, non-uniform flow of a 

mixture of water and the plastic cylinders used by Armanini et al. (2005), with the properties 

summarized in Table 3. As already mentioned, Davies (1988, 1990) made use of similar particles 

(see Section 2) in his moving-bed apparatus. As explained by Davies, fixing the belt velocity in 

the moving-bed apparatus is equivalent to fixing the depth-averaged velocities uA = UA in the 

laboratory frame of reference. 

In Fig. 11, we show depths that result from the numerical solution of Eqs. (28) and (29) for 

φ = 30°. They exhibit distinctive features of debris flows observed both in the laboratory (Davies 

1988) and in nature (Takahashi 1991, Iverson 1997): there is a front (head) in which the particle 

depth increases upslope, a body characterized by an approximately constant depth, and a tail 

where the depth diminishes (Fig. 11a). Fig. 11a shows that the wave bulges at the front because 

the depth of the uniform dry granular flow is greater than the depth of the uniform granular-fluid 

flow; the particle depth initially seeks the former, but eventually asymptotes to the latter. As 
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observed by Davies (1988), increasing the longitudinal extension of the dry front causes the 

length of the body to increase, without substantially affecting the shape of the front or the tail. 

Fig. 11b shows that an increase of the depth-averaged velocity causes an increase in the 

maximum height of the wave and a decrease in the length of the body; once again, this is in 

accordance with Davies’ (1988, 1990) observations. A similar behaviour can be obtained by 

decreasing the inclination of the rigid bed (Berzi and Jenkins 2009). 
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Fig. 11. (a) Particle depth (black lines) versus position for a granular-fluid wave over a rigid bed 

with φ = 30° and uA = UA = 10, for * * 400x X− =  (dot-dashed line), * * 700x X− =  (dashed line), 

and * * 1000x X− =  (solid line). The fluid depth versus position, substantially independent of the 

longitudinal extension of the dry front, is represented by the gray solid line. (b) Particle depth 

(black lines) and fluid depth (gray lines) versus position for a granular-fluid wave over a rigid, 

bumpy bed with φ = 30° and * * 1000x X− = , for uA = UA = 5 (dot-dashed lines), uA = UA = 10 

(solid lines) and uA = UA = 15 (dashed lines). 

 

In Fig. 12, the depths of two saturated flows are shown as a function of x for two experiments 

Davies (1990) performed at angles of inclination of the rigid beds less than the angle of repose of 

the granular material. Here, we abandon the idea of reproducing the front and the body of the 

wave that Davies’ observations indicate are dry and under-saturated. As already mentioned, at 

these angles, an approach that incorporates a collisional basal layer is required (Jenkins and 

Askari 1999). Nevertheless, if we adopt as upstream conditions the common depths h and H, the 

theory can reproduce the behaviour of the tail. 

The predictions for steady, non-uniform flows suggest that two important features of debris 

flows, observed in the field, can be explained in the contest of the present two-phase approach. 

These are the bulbous shape of the front and the fact, indicated by well-controlled measurements 
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(Iverson 1997), that it is dry. The bulging of the wave can be reproduced without appeal to either 

an artificially imposed longitudinal variation of the solid concentration, as in Hungr (2000) or the 

necessity of size-segregation (e.g., Gray and Thornton 2005), although segregation by size 

certainly occurs at the front. Recent advances in modelling particle segregation in binary 

mixtures are reported in the next sub-section. We note that the formation of lateral levees can 

also be interpreted as the propagation of dry, bulbous fronts of a mixture of grains and fluid. 

 

 

Fig. 12. Experimental (symbols, after Davies 1990) and theoretical (lines) flow depth versus 

position for a granular-fluid wave over a rigid bed with uA = UA = 1.84, for φ = 15° (circles and 

dashed line), and φ = 12.5° (squares and solid line). 

 

Finally, it is worth noting that bulging in debris flows has been associated by Iverson (1997) with 

roll waves - surface instabilities typical of shallow water. Indeed, unsteadiness and intermittency 

are often observed in granular-fluid mixtures, even when a steady, uniform flow might be 

expected. Such instabilities typically occur when the particle volume flux exceeds a certain 

threshold, at a given total volume flux. Roll waves manifest themselves in many flows 

(Balmforth and Mandre 2004 and references therein), including dry granular flows on inclines 

(Forterre and Pouliquen 2003). As in the latter situation, it is likely that a linear stability analysis 

carried out on the system (19) through (25) would provide a limiting value for the particle 

volume flux, at fixed fluid volume flux for which a stable uniform flow is possible.  

 

3.3 Size-segregation 

We next outline a kinetic theory for segregation of particles that differ by size and/or mass in a 

uniform, fully saturated binary mixture of particles in which the particle-particle interactions are 

dominated by collisions. We indicate the similarities and differences between this theory and 

existing phenomenological theories (Lun and Savage 1988, Gray and Thornton 2005, Gray and 

Chugunov 2006, Thornton, et al. 2006, Thornton and Gray 2008) for segregation in dry flows. 

More details of the derivation in the case of dry flows may be found in Larcher & Jenkins 

(2010). We focus the attention on the case where one granular species is dilute in the other and 

determine the equation that describes the time and space evolution of the concentration of the 
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dilute species in a steady, inclined flow of a dense granular-fluid mixture. In this section, we first 

work in terms of dimensional quantities and then phrase the final equations in dimensionless 

form. We employ the coordinate system of Fig. 10. 

We consider nearly elastic spherical particles of masses m
A
 and m

B
, radii r

A
 and r

B
, velocities u

A
 

and uB, number densities nA and nB, and concentrations cA and cB, with mAB
 = m

A
 +m

B, rAB
 = r

A
+ 

r
B, n= n

A
+n

B, and c=c
A
+c

B. The mass density ρA for species A is defined as = =A A A sA Am n cρ ρ , 

where ρsA
 is the mass density of the material constituting species A; its concentration and the 

number density are related by ( )
3

4 / 3.=A A A
c r nπ

 
Similar relations can be written for species B.  

As in the continuum mixture theory just discussed, the kinetic theory of mixtures employs mass 

and momentum balances for each granular species. The momentum balances involve stress 

tensors, a force of interaction between species, and external forces. The mass and momentum 

balances for the particles are the sums of those for the two granular species; they are phrased in 

terms of the particle mass density and a mass-averaged particle velocity. Segregation is described 

using the difference of the mass balances with a flux term that results from a weighted difference 

of the momentum balances with the inertia associated with species velocities relative to the 

mass-averaged particle velocity neglected and all stresses are taken to be pressures. The granular 

temperature that appears in the expressions for the particle pressures and the interaction force is 

the average kinetic energy of the velocity fluctuations of the particles.   

The mass balance for species A is: 

( )u 0,
∂ ∂

+ =
∂ ∂

A
A A

t x
α

α

ρ
ρ  (30) 

where 1α =  and 2, with 
1 =x x  and 

2 .=x Z  The particle mass density ρ is = +A Bρ ρ ρ  and the 

particle mass-center velocity u is ;= +A A B Bρ ρ ρu u u  Then, for example, the diffusion velocity 

v
A
 of species A is defined as the difference between the velocity u

A
 of the species and the mass-

center velocity u: = −A A
v u u , with 0.+ =A A B Bρ ρv v  The mass balance for species A can be 

written in terms of these quantities as 

ln ln ln
0.

∂ ∂∂ ∂ ∂
+ + + + =

∂ ∂ ∂ ∂ ∂

AA A A
Au vn n n

u v
t x x x x

α α
α α

α α α α

 (31) 

The mass balance for species B can be written in a similar way. Taking their difference results in  

( ) ln ln
ln ln 0.
   ∂ ∂ ∂ ∂ ∂

+ + − + − =   
∂ ∂ ∂ ∂ ∂   

B B B A
B A B A

A A

n n n n
u v v v v

t n x n x x x
α α α α α

α α α α

 (32) 

When the convective terms associated with the diffusion velocities are neglected, this becomes 
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( )ln ln 0.
   ∂ ∂ ∂

+ + − =   
∂ ∂ ∂   

B B
B A

A A

n n
u v v

t n x n x
α α α

α α

 (33) 

This equation serves to describe the segregation of the two particle species, once the difference 

in diffusion velocities is determined using the particle momentum balances. 

The momentum balance for species A is 

1 1 1
,

∂∂ ∂
+ = + +

∂ ∂ ∂

AA A

A A A

A A A

tu u
u F

t x x m

αβα α
β α α

β β

Φ
ρ ρ

 (34) 

where 1β =  and 2, t
A
 is the effective stress, F

A
 is the external force, including fluid drag, on a 

particle, and ΦΦΦΦA
 is the rate of momentum exchange between the two granular species. The 

momentum balance for species B can be written in a similar way with .= −B AΦ ΦΦ ΦΦ ΦΦ Φ  Here, for the 

rate of momentum exchange, we employ a simple form derived by Jenkins & Mancini (1997): 

( ) ( )
1/ 2

32 ln 4 2
ln ,

3

B A B A B
A AB AB A B B A

AB A AB AB

m m T n m m
g r n n T v v

m x x n r m T
α α α

α α

π
Φ

π

    − ∂ ∂ 
= − + −    

∂ ∂      

 (35) 

in which g
AB

 is the radial distribution function of species A and B and T is the granular 

temperature of the particles. 

The weighted difference of the two particle momentum balances is, with the neglect of the inertia 

associated with the diffusion velocities and when all stresses are taken to be pressures, 

( )0 .
 ∂ ∂

= − + + − + + 
∂ ∂  

A BA B
B A A B A B A

A B

F F

x x m m

α α
α

α α

π π
ρ ρ ρ ρ ρ ρ Φ  (36) 

where πA
 and πB

 are the partial pressures. Jenkins & Yoon (2002) show that when species B is 

dilute in dense species A, /  1�B An n , the partial pressures simplify to 

( ) ( )
2 316

3

A A AA An g r T
π

π =  and ( )
32

,
3

=B A B AB ABn n g r T
π

π  (37) 

where gAA and gAB are given as functions of the radii ratio and the particle concentration by 

3

(2 )

2(1 )

AA c
g

c

−
=

−
 and 

2 3

(1 )(1 / ) (1 )(1 / ) 2
.

(1 / ) (1 )

   − + + − + +   =
+ −

A B A B

AB

A B

c r r c c r r c
g

r r c
 (38) 

For the purpose of segregation, the particle momentum balance is approximated by 
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( )0
∂

= − + + +
∂

A B
A B A B

A B
F F

x m m
α α

α

ρ ρ
π π . (39) 

Then, upon employing this to eliminate the gradient of Aπ  from Eq. (36) and solving the result 

for −B A
v v , we have  

( )

( )

1/2

2

3

3 1

8 2

1 2 ln
ln .

3

 
− =  

 

   ∂ − ∂ ∂ 
× − + −   

∂ ∂ ∂     

AB
B A

A B
AB AB A

B B A B
B AB AB A

B AB A

m T
v v

m mg r n T
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As in the case of a dense debris flow with a single granular species, we assume that the particle 

concentration, equal here at lowest order to that of species A, is constant. Then, Eq. (40) 

indicates the motion of B with respect to A is influenced by gravity, fluid drag, gradients of the 

particle velocity fluctuations, and spatial inhomogeneity in its number density. In order to say 

more about the relative magnitude of these terms, we must characterize the external force and the 

temperature and velocity fields of the mixture. 

When the fluid shear stress in the dimensional form of Eq. (4) is neglected, fluid drag is balanced 

by the component of the weight of the fluid in the flow direction.  Then, at lowest order in n
B
/n

A
, 

the specific mass, concentration, and velocity of A are those of the particles, and 

( ) 1 ( 1)
sin sin

− + − 
= + =   

A A A A A

x AB

C U u c
n F g g

r c

σ
ρ φ ρ ρ φ

σ σ
 (41)  

and 

1
cos

− 
= −  

 

A A A

Zn F g
σ

ρ φ
σ

; (42) 

the components of F
B
 can be obtained from these by replacing A with B. These equations 

indicate how the influence of gravity on the particles is modified by fluid drag and buoyancy, 

respectively. We employ these modifications in the profiles of temperature and particle velocity 

determined by Jenkins and Berzi (2010) for a steady, uniform, dense, dry, inclined flow of 

identical spheres. When species B is dilute in a steady, uniform, inclined flow of a fully saturated 

mixture of a dense species A and water, these become:  

1 ( ) 1
( ) cos

4

− −
= ��

A

AA

H Z
T Z m g

cg

σ
φ

σ
, (43) 

where
� AAg is evaluated at 

�
c , and 
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Then, at lowest order in / ,B An n Eq. (33) becomes 

( ) ( )ln ln 0,
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Upon introducing F
Β
 and the derivative of πΒ

 in Eq. (40) and keeping only terms at lowest order 

in nB
/n, 
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We employ the expression (43) for T in Eqs. (46) and (47), make lengths and velocities 

dimensionless using r
AB

 and (gr
AB

)
1/2

, respectively, and use the same letters to denote the 

dimensionless quantities. Then, 
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Eqs. (48) and (49) are to be used with 
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where time has been made dimensionless by (r
AB

/g)
1/2

 and, when made dimensionless, the 

mixture velocity of (44) is 
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These equations describe the time-dependent segregation of dilute species B in a steady, uniform, 

dense flow of species A for the simple model of particle interaction derived by Jenkins and 

Mancini (1987). Simple results for the direction of segregation in an initially uniform mixture 

(Larcher and Jenkins 2010b) and the steady profile of species concentration (Larcher and Jenkins 

2010a) can be obtained directly from the condition that the normal component of the relative 

velocity vanishes.  

The segregation theory just described has not yet been tested in physical experiments or 

numerical simulations of dense, inclined flows. The theory has the advantage of being based on 

instantaneous, binary collisions between particles; however, it is not clear that in dense flows the 

interactions are so simple. Here, we have used the theory for segregation in conjunction with the 

flow theory of Jenkins and Berzi (2010) that employs phenomenology in an attempt to treat more 

complicated interactions. There is also a phenomenological theory for size segregation with a 

structure that is similar but simpler to that describe above that was inspired by physical 

experiments. 

The theory of Thornton, et al. (2006) for size segregation in fluid-saturated, inclined flows 

attempts to improve upon the mathematical description of kinetic sieving introduced by Lun and 

Savage (1988). Kinetic sieving involves the downward percolation of small particles through the 

pore space of a contacting network of large particles that are forced upward. It is based on 

continuum momentum balances for each particle species that incorporate the rate momentum 

exchange between the two species, gradients of partial pressures, and gravity. These are the 

analogs of Eq. (33). Constitutive assumptions for the rate of exchange of momentum and the 

partial pressures that correspond to Eqs. (44) to (46) result in simple expressions for the diffusion 

velocities normal to the flow in the absence of diffusive mixing that vanish with the 

concentration of the other species and with gravity. The incorporation in the momentum 

exchange of terms proportional to the spatial gradients of species number fractions (Gray and 

Chugunov 2006) gives the theory the capability to describe diffusive mixing. The resulting 

theory is simple enough to support elegant analysis of both steady and unsteady segregation, 

with and without diffusive mixing (e.g., Gray 2010). 

Both the kinetic and phenomenological theories have the capability to predict the concentration 

profiles that exhibit inverse grading - the larger spheres above the smaller - observed in 
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experiments on dry materials (Lun and Savage 1988, Savage and Valance 2000). The question is 

whether the particle interactions important to segregation are dominated by near-instantaneous 

collisions or by longer lasting interactions. If the former, existing methods of phrasing and 

solving boundary-value problems for size and mass segregation (e.g., Arnarson and Jenkins 

2004) can be implemented for these fluid-particle systems. 

4. Conclusion 

We have reviewed existing laboratory experiments on steady, inclined flows of mixtures of water 

and a single idealized granular phase that focus on the differences in the depths and the velocity 

of the two phases; the most recent experimental investigations provide evidence for the 

importance of collisional exchange of momentum and energy between the particles. Moreover, 

they show a stratification of rheological regimes within the flow, with some layers dominated by 

near-instantaneous collisions between grains and others in which particles interact through more 

sustained contacts. Unfortunately, there is not much data available, particularly for what we have 

called under-saturated flows. We hope that the present review will stimulate and provide a 

context for future experimental investigations on debris flows, especially those for which the 

particle volume flux is greater than the fluid volume flux. 

We also have reviewed and extended a two-phase mixture theory that makes use of a relatively 

simple particle rheology to describe the particle-particle interactions. We have highlighted that 

the theory is capable of quantitatively reproducing the available laboratory experiments on 

uniform flows of water and artificial particles. In the context of that theory, the existence of an 

under-saturated front is sufficient to explain the bulging of a steady granular-fluid wave observed 

both in laboratory and in the field, without the necessity for change in the particle concentration 

or size segregation. With respect to the latter, we have outlined a kinetic theory for dense, 

inclined flows of two types of particles and water as a possible alternative to existing 

phenomenological theories.  

Throughout, we have focused on simple flows of simple particles-fluid systems. While natural 

debris flows are certainly more complex, our view is that the models that are used to describe 

them should certainly be capable of describing the simpler situations. 
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